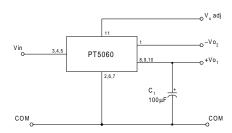

9-W +5V-Input Dual-Output Integrated Switching Regulator

(Revised 12/19/2001)


Features

- Single Device: +5V Input
- Complimentary Dual Output: ±12V, ±15V
- Wide Input Voltage Range
- 85% Efficiency
- Adjustable Output Voltage
- Laser-trimmed

Description

The PT5060 series of dual-output Integrated Switching Regulators (ISRs) provide a complimentary ±12V or ±15V from a single +5V input. Applications include systems that require power for analog interface circuitry, such as D/A and A/D converters, and Op Amps. The output voltage can be adjusted with an external resistor. These ISRs are made available in a 12-pin single in-line pin (SIP) package. Note that these modules are are not short-circuit protected.

Standard Application

 C_1 = Required 100 μ F electrolytic

Pin-Out Information

Pin	Function
1	$-Vo_2$
2	GND
3	Vin
4	V_{in}
5	V_{in}
6	GND
7	GND
8	$+Vo_1$
9	$+Vo_1$
10	$+Vo_1$
11	V _o Adj
12	Do Not Connect

Ordering Information

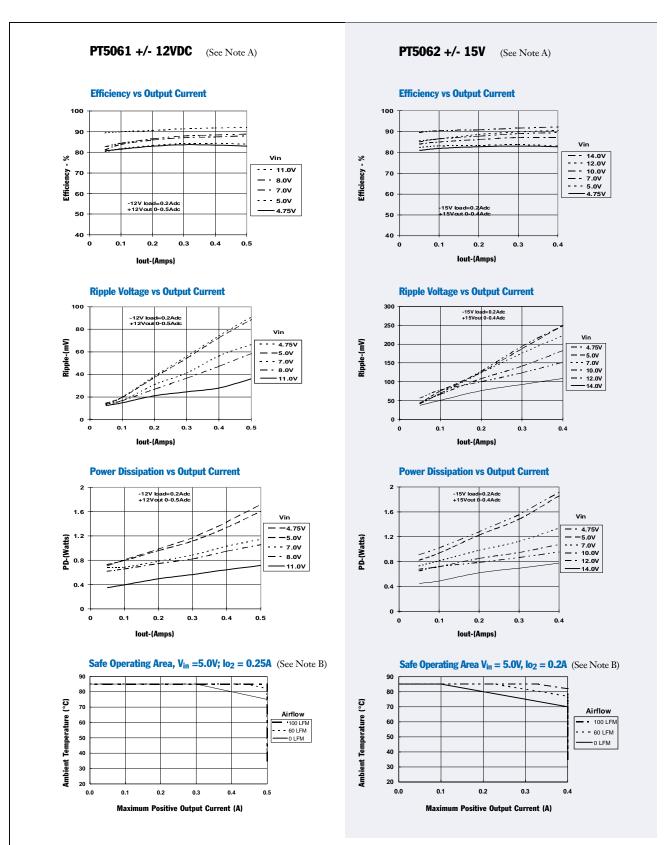
PT5061□ = ±12 Volts **PT5062**□ = ±15 Volts

PT Series Suffix (PT1234x)

Case/Pin Configuration	Order Suffix	Package Code *
Vertical	N	(ECD)
Horizontal	Α	(ECA)
SMD	C	(ECC)
Vertical, Side Tabs	R	(ECE)
Horizontal, Side Tabs	G	(ECG)
SMD, Side Tabs	В	(ECK)

^{*} Previously known as package style 300.

(Reference the applicable package code drawing for the dimensions and PC board layout)


Specifications (Unless otherwise stated, T_a =25°C, V_{in} =+5V, I_o = I_o max, C_1 =100 μ F)

				P	T5060 SERIE	s	
Characteristics	Symbol	Conditions		Min	Тур	Max	Units
Output Current	I_{o}		$Vo_1 = +12V$ $Vo_2 = -12V$	0.05 0.05 (1)	_	0.50 0.25	A
			$\begin{array}{l} Vo_1 = +15V \\ Vo_2 = -15V \end{array}$	0.05 0.05 (1)	_	0.40 0.20	A
Current Limit	I_{lim}			_	150(2)	_	%I _o max
Inrush Current	I_{ir} t_{rr}	On start up		_	5.5 (3) 2	_	A mSec
Input Voltage Range	V _{in}	Over Io range		4.75	_	+V _o -1	V
Output Voltage Tolerance	$\Delta { m V_o}$	Over V_{in} and I_o ranges T_a = 0°C to SOA limit (3)	+Vo ₁ -Vo ₂	_	±1.5 ±5	±3.0 ±10	$%V_{o}$
Line Regulation	Reg _{line}	Over V _{in} range		_	±0.5	±1.0	$% V_{o}$
Load Regulation	Reg _{load}	$0.1 \le I_o \le I_o max$		_	±0.5	±1.0	$%V_{o}$
V _o Ripple (pk-pk)	V_n	20MHz bandwidth	$-Vo_1$	_	±1.5 ±2	±3 ±3	$%V_{o}$
Transient Response	$ au_{ m tr}^{ m tr}$	25% load change V _o over/undershoot		_	100 3	5	μSec %V _o
Efficiency	η	I _o =0.2A each output		_	85		%
Switching Frequency	f_{s}	Over V_{in} and I_{o} ranges		_	650	_	kHz
Operating Temperature Range	T_a	_		0	_	+85 (4)	°C
Storage Temperature	T_s			-40		+125	°C
Mechanical Shock		Per Mil-STD-883D, Method 2002 1 msec, Half Sine, mounted to a fixt		500	_	G's	
Mechanical Vibration		Per Mil-STD-883D, Method 2007. 20-2000 Hz, Soldered in a PC boar		15	_	G's	
Weight				_	6.5	_	grams

Notes: (1) Do not operate thes negative output rail of these ISRs below the minimum load.

- (2) ISRs based on a boost topology are not short-circuit protected.
- (3) The inrush current stated is above the normal input current for the associated output load.
- (4) See Safe Operating Area curves or consult the factory for the appropriate derating.

Note A: Characteristic data has been developed from actual products tested at 25°C. This data is considered typical data for the Converter. Note B: Thermal derating graphs are developed in free-air convection cooling, which corresponds to approximately 40–60LFM of airflow.

PT5060 Series

Adjusting the Output Voltage of the PT5060 Dual-Output Boost Converter Series

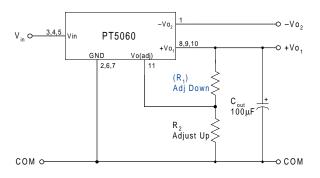
The dual output voltage of the PT5060 series modules can be adjusted higher or lower than the factory pre-set voltage with the addition of a single external resistor. Table 1 gives the applicable adjustment range for each model in the series as V_a (min) and V_a (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor R_2 , between pin 11 (V_0 adj) and pins 2, 6, or 7 (GND).

Adjust Down: Add a resistor (R_1) , between pin 11 $(V_0 \text{ adj})$ and pins 8, 9 or 10 (V_{01}) .

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor, either (R_1) or R_2 as appropriate.

Notes:


- 1. Both the positive and negative voltage outputs from the ISR are adjusted simultaneously.
- 2. Use only a single 1% resistor in either the (R_1) or R_2 location. Place the resistor as close to the ISR as possible.
- 3. Never connect capacitors from V_o adj to either GND or V_o . Any capacitance added to the V_o adjust pin will affect the stability of the ISR.
- 4. An increase in the output voltage must be accompanied by a corresponding reduction in the specified maximum current at each output. For Vo₁ and –Vo₂, the revised maximum output current must be reduced to the equivalent of 6 watts and 3 watts respectively. i.e.

$$Io_1 \text{ (max)} = \frac{6}{V_a} \quad Adc$$

and $Io_2 \text{ (max)} = \frac{3}{V_a} \quad Adc$

where V_a is the adjusted output voltage.

5. Adjustments to the output voltage will also limit the maximum input voltage that can be applied to the ISR. The maximum input voltage that may be applied is limited to $(V_0 - 1)Vdc$ or 14Vdc, whichever is less.

Figure 1

The values of (R_1) [adjust down], and R_2 [adjust up], can also be calculated using the following formulas.

(R₁) =
$$\frac{3.65 (V_a - 2.5)}{(V_o - V_a)} - 0.1$$
 kΩ

$$R_2 = \frac{9.125}{V_2 - V_0} - 0.1$$
 $k\Omega$

 $\begin{array}{lll} Where: & V_o & = Original \ output \ voltage \\ & V_a & = Adjusted \ output \ voltage \end{array}$

Table 1
PT5060 ADJUSTMENT AND F

PT5060 ADJUS	60 ADJUSTMENT AND FORMULA PARAMETI		
Series Pt #	PT5061	PT5062	
Vo (nom)	±12.0V	±15.0V	
V _a (min)	± 7.5V	± 7.5V	
V _a (max)	±14.0V	±20.0V	

Table 2

Series Pt #	PT5061	PT5062
Current	0.5/0.25Adc	0.4/0.2Adc
V _o (nom)	±12.0Vdc	±15.0Vdc
V _a (req'd)		
7.0		
7.5	(4.0) k Ω	(2.3) k Ω
8.0	(4.9) k Ω	(2.8) k Ω
8.5	(6.2) k Ω	(3.3) k Ω
9.0	(7.8) k Ω	(3.9) k Ω
9.5	(10.1) k Ω	(4.6) k Ω
10.0	(13.6)k Ω	(5.4) k $\mathbf{\Omega}$
10.5	(19.4)k Ω	(6.4) k Ω
11.0	(30.9)k Ω	(7.7)k Ω
11.5	(65.6)k Ω	(9.3)k Ω
12.0		(11.5)k Ω
12.5	18.2k Ω	(14.5)k Ω
13.0	9.0k Ω	(19.1)k Ω
13.5	6.0k Ω	(26.7)k Ω
14.0	4.5k Ω	(41.9)k Ω
14.5		(87.5)k Ω
15.0		
15.5		18.2k Ω
16.0		9.0k Ω
16.5		6.0k Ω
17.0		4.5k Ω
17.5		3.6k Ω
18.0		2.9k Ω
18.5		2.5k Ω
19.0		2.2k Ω
19.5		1.9k Ω
20.0		1.7k Ω

 $R_1 = (Blue)$ $R_2 = Black$

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated